Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing.
نویسندگان
چکیده
OBJECTIVE The performance and usability of brain-computer interfaces (BCIs) can be improved by new paradigms, stimulation methods, decoding strategies, sensor technology etc. In this study we introduce new stimulation and decoding methods for electroencephalogram (EEG)-based BCIs that have targets flickering at the same frequency but with different phases. APPROACH The phase information is estimated from the EEG data, and used for target command decoding. All visual stimulation is done on a conventional (60-Hz) LCD screen. Instead of the 'on/off' visual stimulation, commonly used in phase-coded BCI, we propose one based on a sampled sinusoidal intensity profile. In order to fully exploit the circular nature of the evoked phase response, we introduce a filter feature selection procedure based on circular statistics and propose a fuzzy logic classifier designed to cope with circular information from multiple channels jointly. MAIN RESULTS We show that the proposed visual stimulation enables us not only to encode more commands under the same conditions, but also to obtain EEG responses with a more stable phase. We also demonstrate that the proposed decoding approach outperforms existing ones, especially for the short time windows used. SIGNIFICANCE The work presented here shows how to overcome some of the limitations of screen-based visual stimulation. The superiority of the proposed decoding approach demonstrates the importance of preserving the circularity of the data during the decoding stage.
منابع مشابه
Multichannel Decoding for Phase-Coded SSVEP Brain-Computer Interface
We propose a complex-valued multilayer feedforward neural network classifier for decoding of phase-coded information from steady-state visual evoked potentials. To optimize the performance of the classifier we supply it with two filter-based feature selection strategies. The proposed approaches could be used for a phase-coded brain-computer interface, enabling to encode several targets using on...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملAccurate Decoding of Short, Phase-Encoded SSVEPs
Four novel EEG signal features for discriminating phase-coded steady-state visual evoked potentials (SSVEPs) are presented, and their performance in view of target selection in an SSVEP-based brain-computer interfacing (BCI) is assessed. The novel features are based on phase estimation and correlations between target responses. The targets are decoded from the feature scores using the least squ...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملDevelopment of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2013